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Conclusions

An analysis of the high-alpha lateral stability of 45-deg delta
wings reveals that nonslender wing rock can only occur on a wing
with rounded leading edges that trims at a large roll angle. In that
case, the dipping, windward wing-half will experience dynamic un-
damping of the type observed on stalling airfoils, driving the wing-
rock motion. In contrast, when the leading edge is sharp, no wing
rockoccursevenathigh anglesof attackandroll becausethe leeward
surface generates a dead-air-typeof flow that has little effect on the
roll damping and the attached flow on the windward side generates
sufficient roll damping to prevent the wing rock from developing.
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Calculating Flight Paths of Not
Necessarily Small Inclination

John T. Lowry*
Flight Physics, San Marcos, Texas 78666

Introduction

LTHOUGH the small flight-path angle approximation ade-

quately treats routine operations of propellerfpiston airplanes,
its premise often fails to apply to modern jet aircraft with high
thrust/weightratios and might even be deficient for some maneuvers
(e.g.,steeply banked low-speed coordinatedturns)of lightairplanes.
The historical reluctance' to move beyond the small path angle ap-
proximationwas perhapsonce understandable,but is no longer. This
Note presents three graduated improvements (two analytical, one
numerical) that can be used to solve a respectably comprehensive
set (S-1) of aircraft center-of-mass equations of motion whenever
better accuracy is needed. After describing those approximations
and their solutions, sample calculationsusing each level of approxi-
mation are given for two jet aircraftclimbing steeply at various bank
angles. The author’s future research plan is to use these enhanced
flight-path approximations,together with improved modeling of the
action of constant-speed propellers, to more realistically calculate
tight or quick turn performance of Civil Air Patrol mountain search
and rescue aircraft such as the Cessna 182 or 206.
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In cases of steady banked flight, aircraft trajectories are portions
of helices. A given helical flight path can be described by radius R
of the (rightcircular) cylinderon which itis wound, angularrotation
rate w, and steady rate of climb or descent /. It turns out, however,
that neither is R the flight-path radius of curvature p nor is w the
airplane’s angular speed x . Exact relations between those two pairs
of variables will be derived next.

Four Graduated Sets of Equations
for Steady Aircraft Motion

The base set of equations we are concerned with, S-1, is

Tcos(e +ay) — D —Wsiny =0 @9)]
Lcosp —Wcosy + Tsin(e +ar) =0 )
Lsing — Wv?/gp =0 3)

These equations come from considering forces 1) along the air-
plane’s flight path, 2) perpendicular to the path and in the vertical
direction,and 3) perpendicularto the pathandin the horizontaldirec-
tion. Those are directionsof the common “trihedral” of right-handed
orthonormal vectors£, i, b of elementary differential geometry. As-
suming the tie between lift L and angle of attack & givenby a known
relation Cy (o), Egs. (1) and (2) are essentially in unknowns o (or
lift L) and y; Eq. (3) is in unknowns « (or L) and p.

Set S-1 incorporates assumptions that also apply (with further
specific additions) to the three approximations to be considered:
1) no acceleration beyond the centripetal acceleration of a steady
turn; 2) thrustoffset oz, if any, is constantand only in the airplane’s
plane of symmetry; 3) no side forces (only coordinated flight);
4)no “kineticenergy effect”; 5) aircraft weight W is constantduring
any single maneuver, as are thrust T, scalar airspeed v, and all of
the rest of the featured variables; and 6) the drag polar is quadratic,
Cp=Cpo+ KCE. The remainder of this section presents the four
equation sets, in increasing order of exactitude, and remarks on
their solutions. Frequent use will be made of standard variables and
relations, such as

q =1pv°, L(a) =qSCy(a)

D(a) = Dp + Di(a) = ¢5[Cpo + KC} (@)] )

often with additional subscripts to indicate the approximationbeing
considered.

Small Flight-Path Angle +; (and Small Angles of Attack), S-4

This approximation is zeroth order in angles of attack—
cos(e +ar) =1 and sin(a +a7) =0 and treats angle y as small
in the sense that cosy =1 but siny remains intact. The effect is
to disentangle lift L from y and immediately give one of the three
needed solutions as

L;=W/cosg (5)

(Subscript s is for small flight-path angle.) Using the second of
Egs. (4), one gets

Kw?
Dy =qSCpy + ———=— = Dp + D; (6)
qgScos? g
Because Eq. (1) is now approximated as
T —D;—Wsiny, =0 @)

we have a second and more important solution as
siny, = (T — D)/ W (®)

where it is understood that (T — D;) < W. It is only left to solve
Eq. (3), understandinga somewhat deficient L ~ L, to get (justas
for level steady coordinated turns)

Wo? v?

- gL, sing - gtang

Ps ®)
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Angle ~, Not Necessarily Small
(and Small Angles of Attack), S-3

This approximation too is zeroth order in the angles of attack,
butit leaves both appearancesof path angle intact. The equations of
motion are

T—-D,—Wsiny, =0 (10)
L,cos¢p —Wcosy, =0 (11)
L,sing — Wv?/gp =0 (12)

(Subscript n stands for “not necessarily small.”) Equation (11) is
solved for lift to give

L, =Wcosy,/cosg (13)

(as yetonly an incipientsolutionbecause y, is still unknown). Then
of course

L, W cosy,
Cn@) =—7=—7——

= (14)
qS gqScosg
and
KW?2cos? y,
D, =qSCpo + S ) = Dp + D,
qS cos? @
= Dp + Di(1 —sin’y,) (15)

which motivates the punctilious use of subscripts. With Eq. (15)
substitutedinto it, Eq. (10) becomes a quadratic in sin y,—standard
form Ax2+ Bx 4+ C =0, with solutions written as simple cor-
rections to the small flight-path angle approximation sin y,. That
quadraticis

(Di/ W) sin® y, — siny, +siny, =0 (16)

with coefficients readily available from the small flight-path angle
approximation. Here the general quadratic solutions

2C
e 17)
—B F+vB?—-4AC
give specific solutions
2siny,
siny, = YV (18)

1 F/1—4Disiny,/W

In most (but not all) cases only the lower sign gives physically
realizable results. With y, in hand, L, is available from Eq. (13),
and, using it, the radius of curvature is

Wo? v?

- gL, sing - gtang cosy,

. (19)

Low Aerodynamic Angles of Attack o (with ap = 0), S-2

This approximation, besides forcing a7 =0, is second order in
trigonometric functions of « and also restricts C; (@) =aa to its
linear portion. Equations (1) and (2) become

T(l—a*/2)— D, — Wsiny, =0 (20)
Lycosop —Wceosy, + Taa =0 2n

Equation (3) is unchanged, although through these approximations
L, < L very slightly. Using L, = ¢SC. () = gSaa, Eq. (21) is lin-
ear in «. Substituting the resulting expression

W cos y»
o

= — 22
T +gSacosg (22)

into Eq. (20), one gets a quadraticin sin y, with standardcoefficients:

_ T/2+¢SKa® _
T U (T +gSacose)?’ -
T—¢gSC
C = " 9°%p0 _ 4 (23)
w
The solutions are then
i 2€ 24)
siny, = ———
I F JT—dAC
14+T/qSa
PRt (25)
gtan @ cos y,
Saw
= goaW cosy, (26)
T 4+ ¢gSacosg

As will be seen in numerical examples, these implied analytic solu-
tions to S-2 give results very close to exact numerical solutions to
S-1. Unstalled angles of attack are more restricted to small than are
modern-day flight-path angles.

A loosened version of S-2, without requiring o7 = 0, could also
be pushed through analytically. Then Eqgs. (1) and (2) become

T[1—(@+ar)?/2] =D~ Wsiny =0 27

Lcosp —Wcosy +T(ax+ar)=0 (28)

One first gets an expression for (o« + a7 ) from Eq. (28)—treating o
as [(a + ar) — ar ]—and substitutes that expressioninto Eq. (27) to
get terms in 1, sin y, cos ¥, and cos? y. One then changes variable
to tan y and ends with a quartic with complicated coefficients. In
view of the close approximations afforded by solutions to S-2, or
by the not difficult numerical solutions of S-1, solving that quartic
does not appear worthwhile.

Unrestricted Base Set of Equations of Motion, S-1,
and Their Numerical Solution

Although there is no general (nonspecial case) analytic solution
to Egs. (1-3), they can be solved numerically:

Step 1) Isolate the single terms in flight-path angle y in each of
Egs. (1) and (2), square both expressions, and add them. Angle y is
thereby eliminated. One obtains:

W? —T? — L*(@) cos®> ¢ — D*(a) + 2TD(«) cos(ar + o)
—2TL(x) cos g sin(e +a7) =0 29)

Step 2) Use the latter two of Eqgs. (4) and squares of both those
expressions in Eq. (29). One gets the following expression, terms
organized according to factors featuring unknown «:

[W? — T% — (gSCpp)*] + cos(@ + a7)2TqS[Cpo + KC3 (@) ]
— sin(a + a7)2TgSC, () cos ¢ — [¢SCL (@)]?

x (cos? ¢ + 2K Cpo) — [qSKC2(@)] =0 (30)

Step 3) Solve Eq. (30), numerically, for & (inradians). (The Excel
spreadsheet program Solver facility is sufficient.)

Step 4) With & now known, numericallysolve Eq. (1) [and Eq. (2),
as a check] for y.

Step 5) Calculate lift L by using the second of Eqs. (4).

Step 6) Find the path radius of curvature by rearranging Eq. (3),
using known L, to get

o= Wuv?/gLsing 31
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Table1 Sample aircraft parameters
and operating data

Data item F104-G F-16C
Chpo 0.018 0.018
K 0.20 0.1326
a,rad™! 2.85 3.77

S, ft? 196 300

T, 1bf 15,000 20,000
W, Ibf 18,000 23,000

Table 2 Flight-path data from four sets of equations of motion

Aircraft F104-G F-16C
Airspeed, ft/s 422 464 591 295 295 295
Bank angle, deg 0 30 60 0 30 60
S-4

Vs, deg 44.8 43.4 35.1 48.3 45.6 26.9

Ly, Ibf 18,000 20,785 36,000 23,000 26,558 46,000

Ps, ft NA 11,598 6,262 NA 4,696 1,566
S-3

Vn, deg 49.0 47.7 40.5 54.3 52.9 36.1

Ly, Ibf 11,815 13,984 27,371 14,431 16,017 37,172

Pn, ft NA 17,238 8,236 NA 7,787 1,937
S-2

y2, deg 49.4 48.3 422 54.8 53.9 46.4

L, Ibf 10,386 12,340 23,621 11,318 13,068 23,675

P2, ft NA 19,534 9,544 NA 9,545 3,042
S-1

y1, deg 49.4 48.3 422 54.8 53.9 46.3

Ly, Ibf 10,388 12,342 23,627 11,321 13,073 23,737

p1, ft NA 19,531 9,542 NA 9,541 3,034

Sample Numerical Solution Results

Two jet fighters, both at mean sealevel (MSL) with flaps up, were
chosen: 1) F104-G, aircraft parameters from Adamson,? and 2) F-
16C, parameters from Asselin.? Details are in Table 1. Airspeeds v
were picked arbitrarily but always above the relevant stall speed.

Table 2 displays solutions of the four sets of equations of motion
for these two aircraft under the cited conditions, at MSL, flaps up,
or = 0.

Helical Flight Paths

When banked, the airplane’s trajectory is a portion of a helix. To
prove that fact, one can integrate approximate equations of motion
either in cylindrical coordinates (carefully) or in Cartesian ones.
Or, one can take a specimen helical path, parameterized by R, w,
h=wvsiny, and show that a mass following that path at constant
speed v must be acted on by forces mirroring the equations of mo-
tion. But in fact one has no doubt that steady banked flight results
in helical flight paths. The question is, Which helix?

One clue comes from the fact that the airplane’s horizontal com-
ponent of velocity, v cos y, must equal Rw. In addition, we know
from dynamics that v = p x, and so p x cos y = Rw. One further re-
lation is needed. Consider a coordinate system O* parallel to our
usual Cartesian system O and moving uniformly in the Z direction
at speed h. From the point of view of O*, the airplane is simply
moving with speed Rw = v cos y in a horizontal circle of radius R;
hence, it must have force F* =[m(Rw)?/ Rl =[m(v cos y)?/R]i
acting on it. But because O* is not accelerated with respect to O,
F* must equal the force as seen from the O system, F = (mv?/p)i.
Hence,

o =R/cos’y (32)
Then from the earlier relation one finds
X = wcosy (33)

so that always p > R and x < w, as makes intuitive sense.

Conclusions

In a specific case in which one questions validity of the small
flight-path angle approximation (set S-4), several analytical or nu-
merical procedures stand ready to settle that question and, if nec-
essary, to supplant that inadequate approximation. Set S-3 gave
markedly better results than S-4 with very little additional effort.
Set S-2, though yielding a more complicated quadratic, gave results
almost as good as the exact numerical solutions to set S-1. Once set
up, even that last procedure takes only a few minutes. The confusing
relations between radii of curvature and angular speeds, looked at
from the alternative aircraft dynamics and helix kinematics points
of view, were clarified.
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Radar Cross Section Constraints
in Flight-Path Optimization

Martin Norsell*
Royal Institute of Technology,
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Introduction

HE Department of Aeronautics at the Royal Institute of Tech-

nology has for some time been involved in developing methods
for aircraft trajectory optimization. The optimized trajectories have
been flight tested by the Swedish Air Force using the supersonic
Saab J35 Draken and the jet trainer Saab 105 (Ref. 1-4).

Radar is the only threat against aircraft considered in this study.
The detectiontime is defined as the time interval between the instant
at which the aircraft is first detected and the instant at which the
aircraft reaches the specified target. The detection distance is the
distance from the target to the position at which the aircraftis first
detected by radar. Given an initial aircraft position and a target
position, the offset distance is defined as the perpendiculardistance
to an alternativeflight path parallel to the original flight path. Hence,
a flight path pointing directly at, or above, the target is defined to
have zero offset.

In a previous study substantial decrease in detection time was
experienced and verified in flight tests. This was achieved with-
out any optimization methods applied.’ The purpose of the present
study is to develop a radar cross section (RCS) constraint suitable
for three-dimensional flight-path optimization. To be computation-
ally efficient, such an RCS representation has to be continuous and
differentiable. To gain understanding of the potential decrease in
detection time, numerical examples are considered.

Performance Model

Flight-path optimization is often performed in two dimensions,
only consideringthe longitudinaldegrees of freedom. Such a model
is not suitable when RCS propertiesare consideredbecause the RCS
can fluctuate significantly even for small changes in pitch and bank
angles® The full-blown six-degree-of-freedam (6-DOF) model is
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