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Conclusions
An analysis of the high-alpha lateral stability of 45-deg delta

wings reveals that nonslender wing rock can only occur on a wing
with rounded leading edges that trims at a large roll angle. In that
case, the dipping,windward wing-halfwill experiencedynamic un-
damping of the type observed on stalling airfoils, driving the wing-
rock motion. In contrast, when the leading edge is sharp, no wing
rockoccursevenat high anglesof attackand roll becausethe leeward
surface generates a dead-air-typeof � ow that has little effect on the
roll damping and the attached � ow on the windward side generates
suf� cient roll damping to prevent the wing rock from developing.
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Calculating Flight Paths of Not
Necessarily Small Inclination

John T. Lowry¤

Flight Physics, San Marcos, Texas 78666

Introduction

A LTHOUGH the small � ight-path angle approximation ade-
quately treats routine operationsof propeller/piston airplanes,

its premise often fails to apply to modern jet aircraft with high
thrust/weight ratios and might evenbe de� cient for some maneuvers
(e.g., steeplybankedlow-speedcoordinatedturns)of lightairplanes.
The historical reluctance1 to move beyond the small path angle ap-
proximationwas perhapsonceunderstandable,but is no longer.This
Note presents three graduated improvements (two analytical, one
numerical) that can be used to solve a respectably comprehensive
set (S-1) of aircraft center-of-mass equations of motion whenever
better accuracy is needed. After describing those approximations
and their solutions,sample calculationsusing each level of approxi-
mation are given for two jet aircraftclimbingsteeply at variousbank
angles. The author’s future research plan is to use these enhanced
� ight-pathapproximations,togetherwith improvedmodeling of the
action of constant-speed propellers, to more realistically calculate
tight or quick turn performanceof Civil Air Patrol mountain search
and rescue aircraft such as the Cessna 182 or 206.
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In cases of steady banked � ight, aircraft trajectories are portions
of helices. A given helical � ight path can be described by radius R
of the (right circular) cylinderon which it is wound, angular rotation
rate !, and steady rate of climb or descent Ph. It turns out, however,
that neither is R the � ight-path radius of curvature ½ nor is ! the
airplane’s angular speed PÂ . Exact relationsbetween those two pairs
of variables will be derived next.

Four Graduated Sets of Equations
for Steady Aircraft Motion

The base set of equations we are concerned with, S-1, is

T cos.® C ®T / ¡ D ¡ W sin ° D 0 (1)

L cos’ ¡ W cos ° C T sin.® C ®T / D 0 (2)

L sin ’ ¡ Wv2=g½ D 0 (3)

These equations come from considering forces 1) along the air-
plane’s � ight path, 2) perpendicular to the path and in the vertical
direction,and3) perpendicularto thepathandin thehorizontaldirec-
tion.Those are directionsof thecommon“trihedral”of right-handed
orthonormalvectors Ot; On; Ob of elementarydifferentialgeometry.As-
suming the tie between lift L and angleof attack® givenby a known
relation CL .®/, Eqs. (1) and (2) are essentially in unknowns ® (or
lift L) and ° ; Eq. (3) is in unknowns ® (or L) and ½ .

Set S-1 incorporates assumptions that also apply (with further
speci� c additions) to the three approximations to be considered:
1) no acceleration beyond the centripetal acceleration of a steady
turn; 2) thrust offset ®T , if any, is constant and only in the airplane’s
plane of symmetry; 3) no side forces (only coordinated � ight);
4) no “kineticenergyeffect”; 5) aircraftweight W is constantduring
any single maneuver, as are thrust T , scalar airspeed v, and all of
the rest of the featured variables; and 6) the drag polar is quadratic,
CD D CD0 C K C2

L . The remainder of this section presents the four
equation sets, in increasing order of exactitude, and remarks on
their solutions.Frequent use will be made of standardvariablesand
relations, such as

q ´ 1
2
½v2; L.®/ D q SCL .®/

D.®/ D DP C Di .®/ D qS
£
CD0 C K C2

L .®/
¤

(4)

often with additionalsubscripts to indicate the approximationbeing
considered.

Small Flight-Path Angle °s (and Small Angles of Attack), S-4

This approximation is zeroth order in angles of attack—
cos.® C ®T /

:D 1 and sin.® C ®T /
:D 0 and treats angle ° as small

in the sense that cos°
:D 1 but sin ° remains intact. The effect is

to disentangle lift L from ° and immediately give one of the three
needed solutions as

L s D W= cos ’ (5)

(Subscript s is for small � ight-path angle.) Using the second of
Eqs. (4), one gets

Ds D qSCD0 C
K W 2

q S cos2 ’
D DP C Dis (6)

Because Eq. (1) is now approximated as

T ¡ Ds ¡ W sin °s D 0 (7)

we have a second and more important solution as

sin °s D .T ¡ Ds/=W (8)

where it is understood that .T ¡ Ds / ¿ W . It is only left to solve
Eq. (3), understandinga somewhat de� cient L ¼ Ls , to get ( just as
for level steady coordinated turns)

½s D
Wv2

gLs sin ’
D

v2

g tan ’
(9)
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Angle °n Not Necessarily Small
(and Small Angles of Attack), S-3

This approximation too is zeroth order in the angles of attack,
but it leaves both appearancesof path angle intact. The equationsof
motion are

T ¡ Dn ¡ W sin °n D 0 (10)

Ln cos ’ ¡ W cos °n D 0 (11)

Ln sin ’ ¡ Wv2=g½ D 0 (12)

(Subscript n stands for “not necessarily small.”) Equation (11) is
solved for lift to give

Ln D W cos °n= cos’ (13)

(as yet only an incipient solutionbecause°n is still unknown).Then
of course

CLn.®/ D
Ln

qS
D

W cos °n

qS cos ’
(14)

and

Dn D qSCD0 C
K W 2 cos2 °n

qS cos2 ’
D DP C Din

D DP C Dis

¡
1 ¡ sin2 °n

¢
(15)

which motivates the punctilious use of subscripts. With Eq. (15)
substitutedinto it, Eq. (10) becomes a quadratic in sin °n—standard
form Ax 2 C Bx C C D 0, with solutions written as simple cor-
rections to the small � ight-path angle approximation sin °s . That
quadratic is

.Dis=W / sin2 °n ¡ sin °n C sin °s D 0 (16)

with coef� cients readily available from the small � ight-path angle
approximation.Here the general quadratic solutions

x D 2C

¡B ¨
p

B2 ¡ 4AC
(17)

give speci� c solutions

sin °n D 2 sin °s

1 ¨
p

1 ¡ 4Dis sin °s=W
(18)

In most (but not all) cases only the lower sign gives physically
realizable results. With °n in hand, Ln is available from Eq. (13),
and, using it, the radius of curvature is

½n D
Wv2

gLn sin ’
D

v2

g tan ’ cos °n
(19)

Low Aerodynamic Angles of Attack ® (with ®T = 0), S-2

This approximation, besides forcing ®T D 0, is second order in
trigonometric functions of ® and also restricts CL.®/ D a® to its
linear portion. Equations (1) and (2) become

T .1 ¡ ®2=2/ ¡ D2 ¡ W sin°2 D 0 (20)

L2 cos ’ ¡ W cos °2 C T ® D 0 (21)

Equation (3) is unchanged,although through these approximations
L2 < L very slightly.Using L2 D qSCL.®/ D qSa®, Eq. (21) is lin-
ear in ®. Substituting the resulting expression

® D
W cos °2

T C qSa cos ’
(22)

intoEq. (20),onegetsa quadraticin sin °2 with standardcoef� cients:

A D W
T=2 C qSK a2

.T C q Sa cos ’/2
; B D ¡1

C D
T ¡ qSCD0

W
¡ A (23)

The solutions are then

sin°2 D 2C

1 ¨
p

1 ¡ 4AC
(24)

½ D v2 1 C T=qSa cos ’

g tan ’ cos °2
(25)

L2 D
qSaW cos°2

T C q Sa cos ’
(26)

As will be seen in numerical examples, these implied analytic solu-
tions to S-2 give results very close to exact numerical solutions to
S-1. Unstalled angles of attack are more restricted to small than are
modern-day � ight-path angles.

A loosened version of S-2, without requiring ®T D 0, could also
be pushed through analytically.Then Eqs. (1) and (2) become

T
£
1 ¡ .® C ®T /2=2

¤
¡ D ¡ W sin ° D 0 (27)

L cos’ ¡ W cos ° C T .® C ®T / D 0 (28)

One � rst gets an expression for .® C ®T / from Eq. (28)—treating ®
as [.® C ®T / ¡ ®T ]—and substitutes that expressioninto Eq. (27) to
get terms in 1, sin ° , cos ° , and cos2 ° . One then changes variable
to tan ° and ends with a quartic with complicated coef� cients. In
view of the close approximations afforded by solutions to S-2, or
by the not dif� cult numerical solutions of S-1, solving that quartic
does not appear worthwhile.

Unrestricted Base Set of Equations of Motion, S-1,
and Their Numerical Solution

Although there is no general (nonspecial case) analytic solution
to Eqs. (1–3), they can be solved numerically:

Step 1) Isolate the single terms in � ight-path angle ° in each of
Eqs. (1) and (2), square both expressions,and add them. Angle ° is
thereby eliminated. One obtains:

W 2 ¡ T 2 ¡ L2.®/ cos2 ’ ¡ D2.®/ C 2TD.®/ cos.® C ®T /

¡ 2TL.®/ cos ’ sin.® C ®T / D 0 (29)

Step 2) Use the latter two of Eqs. (4) and squares of both those
expressions in Eq. (29). One gets the following expression, terms
organized according to factors featuring unknown ®:
£
W 2 ¡ T 2 ¡ .qSCD0/2

¤
C cos.® C ®T /2T qS

£
CD0 C K C2

L .®/
¤

¡ sin.® C ®T /2TqSCL .®/ cos ’ ¡ [qSCL .®/]2

£
¡

cos2 ’ C 2K CD0

¢
¡

£
q SK C2

L .®/
¤2 D 0 (30)

Step 3) Solve Eq. (30), numerically,for ® (in radians).(The Excel
spreadsheet program Solver facility is suf� cient.)

Step 4)With ® now known,numericallysolveEq. (1) [and Eq. (2),
as a check] for ° .

Step 5) Calculate lift L by using the second of Eqs. (4).
Step 6) Find the path radius of curvature by rearranging Eq. (3),

using known L, to get

½ D Wv2=gL sin ’ (31)
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Table 1 Sample aircraft parameters
and operating data

Data item F104-G F-16C

CD0 0.018 0.018
K 0.20 0.1326
a , rad¡1 2.85 3.77
S, ft2 196 300
T , lbf 15,000 20,000
W , lbf 18,000 23,000

Table 2 Flight-path data from four sets of equations of motion

Aircraft F104-G F-16C

Airspeed, ft/s 422 464 591 295 295 295
Bank angle, deg 0 30 60 0 30 60
S-4

°s , deg 44.8 43.4 35.1 48.3 45.6 26.9
Ls , lbf 18,000 20,785 36,000 23,000 26,558 46,000
½s , ft NA 11,598 6,262 NA 4,696 1,566

S-3
°n , deg 49.0 47.7 40.5 54.3 52.9 36.1
Ln , lbf 11,815 13,984 27,371 14,431 16,017 37,172
½n , ft NA 17,238 8,236 NA 7,787 1,937

S-2
°2 , deg 49.4 48.3 42.2 54.8 53.9 46.4
L2 , lbf 10,386 12,340 23,621 11,318 13,068 23,675
½2, ft NA 19,534 9,544 NA 9,545 3,042

S-1
°1 , deg 49.4 48.3 42.2 54.8 53.9 46.3
L1 , lbf 10,388 12,342 23,627 11,321 13,073 23,737
½1, ft NA 19,531 9,542 NA 9,541 3,034

Sample Numerical Solution Results
Two jet � ghters, both at mean sea level (MSL) with � aps up, were

chosen: 1) F104-G, aircraft parameters from Adamson,2 and 2) F-
16C, parameters from Asselin.3 Details are in Table 1. Airspeeds v
were picked arbitrarily but always above the relevant stall speed.

Table 2 displays solutions of the four sets of equations of motion
for these two aircraft under the cited conditions, at MSL, � aps up,
®T D 0.

Helical Flight Paths
When banked, the airplane’s trajectory is a portion of a helix. To

prove that fact, one can integrate approximate equations of motion
either in cylindrical coordinates (carefully) or in Cartesian ones.
Or, one can take a specimen helical path, parameterized by R, !,
Ph D v sin° , and show that a mass following that path at constant
speed v must be acted on by forces mirroring the equations of mo-
tion. But in fact one has no doubt that steady banked � ight results
in helical � ight paths. The question is, Which helix?

One clue comes from the fact that the airplane’s horizontal com-
ponent of velocity, v cos ° , must equal R!. In addition, we know
from dynamics that v D ½ PÂ , and so ½ PÂ cos ° D R!. One further re-
lation is needed. Consider a coordinate system O¤ parallel to our
usual Cartesian system O and moving uniformly in the Z direction
at speed Ph. From the point of view of O¤, the airplane is simply
moving with speed R! D v cos ° in a horizontal circle of radius R;
hence, it must have force F¤ D [m.R!/2=R]On D [m.v cos ° /2=R] On
acting on it. But because O¤ is not accelerated with respect to O ,
F¤ must equal the force as seen from the O system, F D .mv2=½/ On.
Hence,

½ D R= cos2 ° (32)

Then from the earlier relation one � nds

PÂ D ! cos ° (33)

so that always ½ > R and PÂ < !, as makes intuitive sense.

Conclusions
In a speci� c case in which one questions validity of the small

� ight-path angle approximation (set S-4), several analytical or nu-
merical procedures stand ready to settle that question and, if nec-
essary, to supplant that inadequate approximation. Set S-3 gave
markedly better results than S-4 with very little additional effort.
Set S-2, though yieldinga more complicatedquadratic,gave results
almost as good as the exact numerical solutions to set S-1. Once set
up, even that last procedure takes only a few minutes.The confusing
relations between radii of curvature and angular speeds, looked at
from the alternative aircraft dynamics and helix kinematics points
of view, were clari� ed.
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Introduction

T HE Department of Aeronautics at the Royal Institute of Tech-
nologyhas for some time been involved in developingmethods

for aircraft trajectory optimization.The optimized trajectorieshave
been � ight tested by the Swedish Air Force using the supersonic
Saab J35 Draken and the jet trainer Saab 105 (Ref. 1–4).

Radar is the only threat against aircraft considered in this study.
The detection time is de� ned as the time intervalbetween the instant
at which the aircraft is � rst detected and the instant at which the
aircraft reaches the speci� ed target. The detection distance is the
distance from the target to the position at which the aircraft is � rst
detected by radar. Given an initial aircraft position and a target
position, the offset distance is de� ned as the perpendiculardistance
to an alternative� ight path parallel to the original� ight path.Hence,
a � ight path pointing directly at, or above, the target is de� ned to
have zero offset.

In a previous study substantial decrease in detection time was
experienced and veri� ed in � ight tests. This was achieved with-
out any optimization methods applied.5 The purpose of the present
study is to develop a radar cross section (RCS) constraint suitable
for three-dimensional� ight-path optimization. To be computation-
ally ef� cient, such an RCS representationhas to be continuousand
differentiable. To gain understanding of the potential decrease in
detection time, numerical examples are considered.

Performance Model
Flight-path optimization is often performed in two dimensions,

only consideringthe longitudinaldegreesof freedom. Such a model
is not suitablewhen RCS propertiesare consideredbecausethe RCS
can � uctuate signi� cantly even for small changes in pitch and bank
angles.6 The full-blown six-degree-of-freedom (6-DOF) model is
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